Convexity and smoothness of scale functions and de Finetti’s control problem∗

نویسندگان

  • Andreas E. Kyprianou
  • Vı́ctor Rivero
  • Renming Song
چکیده

We continue the recent work of [2] and [25] by showing that whenever the Lévy measure of a spectrally negative Lévy process has a density which is log convex then the solution of the associated actuarial control problem of de Finetti is solved by a barrier strategy. Moreover, the level of the barrier can be identified in terms of the scale function of the underlying Lévy process. Our method appeals directly to very recent developments in the theory of potential analysis of subordinators and their application to convexity and smoothness properties of the relevant scale functions. AMS 2000 Mathematics Subject Classification: Primary 60J99; secondary 93E20, 60G51.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing Global Minimizers of the Difference of Two Positive Valued Affine Increasing and Co-radiant Functions

‎Many optimization problems can be reduced to a problem with an increasing and co-radiant objective function by a suitable transformation of variables. Functions, which are increasing and co-radiant, have found many applications in microeconomic analysis. In this paper, the abstract convexity of positive valued affine increasing and co-radiant (ICR) functions are discussed. Moreover, the ...

متن کامل

New optimality conditions for multiobjective fuzzy programming problems

In this paper we study fuzzy multiobjective optimization problems defined for $n$ variables.  Based on a new $p$-dimensional fuzzy stationary-point definition,  necessary  efficiency conditions are obtained.  And we prove that these conditions are also sufficient under new fuzzy generalized convexity notions. Furthermore, the results are obtained under general differentiability hypothesis.

متن کامل

Convexity and Geodesic Metric Spaces

In this paper, we first present a preliminary study on metric segments and geodesics in metric spaces. Then we recall the concept of d-convexity of sets and functions in the sense of Menger and study some properties of d-convex sets and d-convex functions as well as extreme points and faces of d-convex sets in normed spaces. Finally we study the continuity of d-convex functions in geodesic metr...

متن کامل

Path-Planning with Obstacle-Avoiding Minimum Curvature Variation B-splines

We study the general problem of computing an obstacle-avoiding path that, for a prescribed weight, minimizes the weighted sum of a smoothness measure and a safety measure of the path. We consider planar curvaturecontinuous paths, that are functions on an interval of a room axis, for a point-size vehicle amidst obstacles. The obstacles are two disjoint continuous functions on the same interval. ...

متن کامل

A Novel Experimental Analysis of the Minimum Cost Flow Problem

In the GA approach the parameters that influence its performance include population size, crossover rate and mutation rate. Genetic algorithms are suitable for traversing large search spaces since they can do this relatively fast and because the mutation operator diverts the method away from local optima, which will tend to become more common as the search space increases in size. GA’s are base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008